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Abstract

Results are presented for turbulence simulations with the fluid edge
turbulence code BOUT [1]. The present study is focussed on turbu-
lence in the divertor leg region and on the role of the X-point in the
structure of turbulence. Results of the present calculations indicate
that the ballooning effects are important for the divertor fluctuations.
The X-point shear leads to weak correlation of turbulence across the
X-point regions, in particular for large toroidal wavenumber. For the
saturated amplitudes of the divertor region turbulence it is found that
amplitudes of density fluctuations are roughly proportional to the local
density of the background plasma. The amplitudes of electron tem-
perature and electric potential fluctuations are roughly proportional
to the local electron temperature of the background plasma.
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1 Introduction

Turbulence in the tokamak boundary plasma is a challenging and funda-
mentally important problem for tokamak physics. The turbulent plasma
transport in the edge is known to strongly affect the global energy confine-
ment time and hence the overall performance of the tokamak. On the other
hand, the level of edge plasma transport determines the width of the power
deposition profiles on the material plasma facing components.
It has been long recognized that the presence of the X-point has a crucial
importance for tokamak edge turbulence [2]. Near the X-point the poloidal
field, Bθ, is small, which leads to a large poloidal wavenumber, kθ. Also, due
to the strong shearing of the magnetic field near the X-point, the flux tubes
are squeezed radially, which leads to a large radial wavenumber, kr. Both
effects lead to strongly increasing perpendicular wave numbers near the X-
point. This greatly enhances the effects of plasma resistivity there, causing
decoupling of flute-like perturbations across the X-point region. Numerical
calculations of linear resistive ballooning modes in the edge plasma in the re-
alistic X-point geometry demonstrated that the presence of the X-point leads
to disconnection of eigenmodes across the X-point [3]. Similar conclusions
were obtained in non-linear simulations of edge plasma turbulence [4].
In limiter tokamak configurations, edge plasma is supported by conducting
end walls. In such configurations emerge sheath-driven instabilities [5, 6, 2, 7].
These instabilities are driven by interplay of radial temperature gradients and
the sheath boundary conditions on the end walls, but curvature effects can
also be important.
Recently, it has been recognized that conducting-wall type instability can
exist in the X-point tokamak configuration, where it is confined to the diver-
tor legs by the X-point shear effects [8]. The analysis in [8] was limited to
the linear instability. Recent non-linear simulations of the the divertor leg
instability with the BOUT code [1] were described in our previous paper [9].
Here we continue and extend the analysis presented in [9].
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2 Simulations of edge turbulence with BOUT

2.1 Physics model

BOUT [1, 4] is a 3-D turbulence code solving a system of plasma fluid equa-
tions based on the reduced Braginskii equations [10]. These are equations
for plasma density, ni, electron and ion temperatures, Te,i, electron and ion
parallel velocity, V||e,i, electrostatic potential, φ, and the vector potential,
A||. BOUT uses the quasi-ballooning coordinates [11] to efficiently handle
the realistic geometry of tokamak. BOUT has been applied to several toka-
mak experiments with encouraging similarity to experimental spatial and
temporal spectra of edge plasma fluctuations [12, 13, 14].

2.2 Average profile evolution

Starting from initial plasma profiles, BOUT can be used in the “predictive”
mode, when the toroidally average plasma profiles are evolved. However,
BOUT does not have all physics that, aside from the turbulent transport, is
involved in forming the steady state plasma profiles, i.e., the atomic physics,
neutral transport, impurity transport and radiation. Therefore, the full time-
evolution with BOUT results in steady-state plasma profiles that, in general,
don’t match the experimental ones.
To circumvent this problem, BOUT can be run in the “interpretive” mode
when the toroidally average plasma profiles are frozen. The latter can be
thought of as adding to the equations fake source terms that are functions of
space but not of plasma variables, so that the equilibrium is maintained but
stability is not affected. For the present study we use frozen plasma profiles,
as described in detail further.

3 Background plasma profiles

In most of previous studies with BOUT [4, 12, 15, 16], the poloidal variation
of background plasma parameters was not taken into account. However,
the ratio of conditions at the mid-plane and in the divertor, Tmid/Tdiv ∼
ndiv/nmid, can be on the order of 3-10 in the high-recycling regime [17].
For the present study, we use a set of analytic background plasma profiles
that approximate the equilibrium state of the edge plasma as known from
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experimental data and edge transport simulations with the UEDGE code
[18]. Figure 1 illustrates the background profiles of ni0 and Te0 for poloidally
constant (top) and poloidally variable (bottom) cases. The radial mid-plane
profiles of ni0 and Te0 are taken exponential with e-folding length typical for
a tokamak. For the poloidal variation of Te0, we use the analytic expression

Te0(s) = [T
γ
div + 4s(1− s)(T

γ
mid − T

γ
div)]

1/γ . (1)

Here s is the poloidal coordinate measured from the inner plate to the outer
one with the total distance normalized to unity, Tdiv is the divertor tempera-
ture, Tmid is the mid-plane temperature, and the constant factor γ is typically
chosen in the range 2-3 which provides a good fit to typical UEDGE calcu-
lations. The poloidal variation of ni0 is set to keep plasma pressure constant
along the field line: ni0(Te0 + Ti0) = const. The plasma flow velocity, Vi||0,
and the DC (toroidally average) electric potential are set zero. The magnetic
geometry corresponds to a typical DIII-D shot with a lower single null.

4 Results of simulations

4.1 Linear growth

For the initial ramp-up stage of instability we compare the growth rates for
fluctuations amplitude. Figure 2 is a plot of root-mean-square (RMS) average
1 of the fluctuating potential, φ̃, against time, for separatrix locations at
the inner leg, outer leg and the outer midplane. The figure shows that the
growth rate in the divertor is much larger than that at the outer mid-plane.
In part this can be explained by the larger plasma resistivity in the divertor,
compared to that at the mid-plane, which gives a larger growth rate for a
resistive-ballooning type instability.
Figure 3 shows the spatial distribution of the fluctuations amplitude during
the initial ramp-up. Note that in the outer leg the fluctuations tend to grow
outside of the separatrix, while in the inner leg they grow in the private-
flux region. For the chosen profiles of the background plasma density and
temperature these are the regions of unfavorable curvature for ballooning
instability, which also points to the ballooning mechanism of the divertor
instability.

1RMS average is defined as
√

< f2 >ζ , where <>ζ means average over the toroidal
coordinate.
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4.2 Scaling trends for saturated turbulence

Scaling trends for saturated turbulence amplitudes are analyzed using a set
of BOUT runs with same radial profiles of ni0, Te,i0 upstream but varying
ni0, Te,i0 in the divertor. Figure 4 shows a plot of ñi against ni0, and Fig. 5
shows a plot of T̃e against Te0, and φ̃ against Te0. The data in the figures are
shown for the inner leg, in the outer leg the trends are similar. The results
plotted in the figures show that the amplitudes of saturated ñi fluctuations
in the divertor are roughly proportional to the local ni0, while the amplitudes
of φ̃ and T̃e are roughly proportional to the local Te0.

4.3 Spatio-temporal correlation for saturated turbu-

lence

To address the role of the X-point for these simulations we calculate the
cross-correlation function for the turbulent potential using the data analysis
package GKV [19]. The cross-correlation function (CCF) is defined as follows:

C(φ̃, φ̃) =
< φ̃(r0, θ, ζ +∆ζ, t+ τ)φ̃(r0, θref , ζ, t) >ζ,t

< |φ̃(r0, θref , ζ, t)|2 >ζ,t
(2)

Here r0 is the radial index of the chosen flux surface, ζ is the toroidal grid
index, and θ is the poloidal index. Also, τ is the time lag, θref is the reference
poloidal index, <>ζ,t means averaging in ζ and t. The CCF measures simi-
larity between the time evolution of fluctuating signals at the points (r0, θ, ζ)
and (r0, θref , ζ+∆ζ), averaged over time and ζ. Note that ζ is also a magnetic
line label in BOUT coordinates, so ∆ζ ≈ 0 for nearby magnetic lines.
As discussed in [9], the CCF for the turbulent potential, Eq. (2), is negligibly
small except for ∆ζ ≈ 0. This means that fluctuations on non-adjacent
magnetic lines are not physically connected. On the other hand, for ∆ζ ≈
0, the CCF is large only if θ and θref are not separated by an X-point.
This means that for points on the same magnetic line fluctuations become
physically disconnected by X-points.
This is illustrated by Fig. 6, where the CCF, Eq. (2), is shown for a flux
surface just outside of the separatrix, with θref at the outer mid-plane, with
∆ζ = 0 and τ=0, for three different toroidal wave numbers, kφ. The figure
shows that the CCF has cutoffs near both the lower X-point and the upper
X-point regions, and the cutoff is more pronounced for larger kφ, as expected
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from the theoretical analysis [20]. Note that the upper X-point is not in the
simulation domain but still it manifests itself via the stronger magnetic field
shear.

5 Summary and conclusions

We have conducted numerical simulations of turbulence in the divertor region
of tokamak with the BOUT code. The results of the present calculations show
that the ballooning drive is important during the linear ramp-up of divertor
fluctuations. For saturated turbulence, the amplitude of density fluctuations
in the divertor is roughly proportional to the background plasma density,
while the amplitudes of temperature and electric potential are small in the
divertor region, as they are roughly proportional to the background plasma
temperature. The X-point shear leads to decorrelation of turbulence across
the X-point regions, more so for larger toroidal wave numbers.
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Figure captions

Figure 1: Profiles of background plasma density and temperature used in
the present calculations. The top figures show the case of poloidally uniform
profiles, the bottom figures show the case of poloidally non-uniform profiles
with Tmid/Tdiv ∼ ndiv/nmid ≈ 2. The poloidal grid goes from the inner plate
to the outer one. The radial grid goes from the core plasma interface to the
outer boundary. The dashed lines show the locations of separatrix and the
X-points.

Figure 2: Time-evolution of RMS < φ̃ > during the initial ramp-up phase.
Fluctuations in the divertor legs grow much faster than those at the midplane.
The reference gyro-frequency is ωci ≈ 7.85× 10

7 rad/sec .

Figure 3: Distribution of RMS < φ̃ > during the initial ramp-up phase.
The fluctuations amplitude is large outside of the separatrix in the outer
leg, and in the private flux region in the inner leg. For the chosen profiles
of the background plasma these are the regions of unfavorable curvature for
ballooning instabilty.

Figure 4: RMS amplitudes of ñi plotted against the local ni0 in the inner
divertor leg for saturated turbulence. Different plotting symbols show data
from five different BOUT cases with same background plasma parameters at
the mid-plane, ni ≈ 1.2×10

13cm−3 and Te,i ≈ 50 eV, and divertor parameters
as indicated in the figure, where temperatures are in eV, densities in 1013cm−3

Figure 5: RMS amplitudes of φ̃i and T̃e plotted against the local Te0 in the
inner divertor leg for saturated turbulence.
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Figure 6: The cross-correlation strength is plotted against the poloidal grid
index for pertubations with three different toroidal wavenumbers. The cut-
offs of the cross-correlation at the X-points are stronger for larger toroidal
wavenumber, kφ.
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